(3 Hours) [Total Marks: 80]

N.B.:

- 1. Question No.1 is compulsory.
- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data wherever necessary.
 - Q1 Answer the following

20

- a) Determine discrete time Fourier series of x (n) = $\cos 2(\frac{\pi}{6}n)$
- b) Explain in brief Region of convergence (ROC) for Laplace transform.
- c) Test the causality of the following system.

1)
$$y(t) = x(t) - x(t-1)$$

2)
$$y(t) = x(t) + 3x(t+4)$$

- d) Sketch signal e^{-6t} u(t) and determine power and energy of signal
- e) State and prove linearity property of Z-transform
- Q2. a) Obtain bilateral inverse Laplace transform of the function:

10

$$X(s) = \frac{3s+7}{(s^2-2s-3)}$$

Find ROC of Re(s) > 3

b) Determine the Fourier series of the following signal:

10

Q3. a_0 Compute the convolution y(n) = x(n) * h(n) using tabulation method

10

Where
$$x(n) = \{1, 1, 0, 1, 1\}$$
 and $h(n) = \{1, -2, -3, \frac{4}{6}\}$

b) Determine the Fourier transform of following continuous time domain signal.

10

i)
$$x(t) = 1-t^2$$
; for $|t| < 1$
= 0; for $|t| > 1$

Q4. a) A stable system has input x (t) and output y (t). Determine transfer function and Impulse response h (t) by using Laplace transform.

10

$$x(t) = e^{-2t}u(t)$$
; $y(t) = -2e^{-t}u(t) + 2e^{-3t}u(t)$

b) State and prove following properties of Fourier transform.

10

- (i) Time shifting property
- (ii) Time Reversal Property
- Q5. a) An LTI system is described by the equation:

10

y(n) = x(n) + 0.8 x(n-1) + 0.8 x(n-2) - 0.49 y(n-2), determine the transfer function of the system and also sketch the poles and zeros on the z-plane.

68045

Paper / Subject Code: 39205 / SIGNALS AND SYSTEMS

	b)	Obtain and sketch the impulse response of the shift invariant system described by $y(n) = 0.4 x(n) + x(n-1) + 0.6 x(n-2) + x(n-3) + 0.4 x(n-4)$	10
Q6.	a)	Using Z- transform, determine the response of the LTI system with impulse response, $h(n) = \{1, -1, 1\}$, for an input $x(n) = \{-2, 3, 1\}$	10
		Explain Gibbs Phenomenon List the properties of ROC for Z- transform.	05 05

68045 Page **2** of **2**